• **Study Overview**

• **Findings & Recommendations:**
 1. Parking Ratio Revisions
 2. Increased Flexibility
 3. Improved Design Standards

• **Discussion**
What Have We Done?

- Address excessive parking supply
- Promote productive uses and open space
- Chesterfield, MO
- McKinney, TX
- Scottsdale, AZ
- Vancouver, WA
- Block & Co
- Hunt Midwest
- The Land Source
- Occidental Management

Developed Study Goals
Reviewed OP & Peer City Zoning Codes
Analyzed Parking Supply & Use at Key Locations
Conducted Developer Stakeholder Roundtables

Winter 2020
Spring 2021
Summer 2021

- Observed commercial parking demand

Legend
Ratio
0.00 - 1.50
1.51 - 1.75
1.76 - 2.00
2.01 - 3.00
3.01 - 7.00

Reviewed Development & Parking Planning Efforts
What Have We Done?

1) Limit the impacts of excessive and underutilized parking supply and increase opportunities for productive uses and open space

2) Foster economic vitality and mixed-use districts by supporting walkability and activity density with appropriate parking policies

3) Implement codes that maximize the efficient use of parking and support shared parking resources citywide

4) Develop provisions that create quality parking screening and design standards that minimize adverse impacts of the built environment

5) Manage the growth of traffic by encouraging projects which minimize driving trips

Forward OP
- Strengthen the identity of neighborhoods
- Define and cultivate walkability
- Explore new transportation funding opportunities
- Enhance community beautification efforts

Vision Metcalf
- Create a series of unique destinations
- Promote a pattern of mixed and multiple-use development
- Develop a balanced transportation system that provides multimodal travel options
- Make walking easy, desirable, and convenient
Key Findings: Summary

- Requirements force construction of significant amounts of parking

![Bar chart showing space for use and parking for different types of buildings: Retail (Commercial), Office, Restaurant, Multi-Family Residential. Assumes average of 500 square feet per parking space.]
Key Findings: Summary

• Resulting parking is regularly under-utilized
Key Findings: Summary

- Underutilized parking is land removed from more productive use
Key Findings: Summary

- Lack of sharing is inefficient and costly
PROPOSED CODE REVISIONS
Developing Revised Parking Ratios: Approach

• **Finding:**
 Existing ratios seem to oversupply parking

• **Propose:**
 New ratios with greater flexibility that better meet goals

• **Based On:**
 Observed data
 National standards
 Peer city standards
Developing Revised Parking Ratios: Approach

- **Finding:**
 Existing ratios seem to oversupply parking

- **Propose:**
 New ratios with greater flexibility that better meet goals

- **Based On:**
 Observed data
 National standards
 Peer city standards

OP Parking Goals:

1) Limit the impacts of excessive and underutilized parking supply and increase opportunities for productive uses and open space

2) Foster economic vitality and mixed-use districts by supporting walkability and activity density with appropriate parking policies

3) Implement codes that maximize the efficient use of parking and support shared parking resources citywide

4) Develop provisions that create quality parking screening and design standards that minimize adverse impacts of the built environment

5) Manage the growth of traffic by encouraging projects which minimize driving trips
Developing Revised Parking Ratios: Approach

• **Finding:**
 Existing ratios seem to oversupply parking

• **Propose:**
 New ratios with greater flexibility that better meet goals

• **Based On:**
 Observed data
 National standards
 Peer city standards

OP Parking Goals:

1) **Introduce an ideal supply range**

2) **Provide more open space and/or other active uses**

3) **Finding:** Existing ratios seem to oversupply parking

4) **Propose:** New ratios with greater flexibility that better meet goals

5) **Based On:**
 Observed data
 National standards
 Peer city standards

1) Limit the impacts of excessive and underutilized parking supply and increase opportunities for productive uses and open space

2) Foster economic vitality and mixed-use districts by supporting walkability and activity density with appropriate parking policies

3) Implement codes that maximize the efficient use of parking and support shared parking resources citywide

4) Develop provisions that create quality parking screening and design standards that minimize adverse impacts of the built environment

5) Manage the growth of traffic by encouraging projects which minimize driving trips
Parking Ratios
Varying Parking Standards by Area

• **Finding:**
 Parking demand varies due to:
 - Density
 - Land Use Type
 - Mix of Land Uses
 - Proximity of Uses

• **Recommendation:**
 Area A – reduced parking requirements
 Area B – slightly reduced parking requirements

• Projects with direct access to street line can use either standard
Parking Ratios
Multiple Data Points for Observed Demand

- **American Community Survey for Overland Park**
 Vehicle ownership by household across the city (includes ALL housing units)
- **Aerial Photography.**
 Represents a weekday peak.
 Weekday, between March 11 and April 6, 2019.
- **Mobility Data Platform**
 Replica
 - Combines several data sources
 - Mobile location data, land use data, and ground-level verifications.
 - June through August, 2019.
- **Pre-Existing Counts.**
 Peak parking counts in both December and July of 2009-2010 for several commercial parcels.
1. Proposed Ratios: MF Residential Uses

Per unit

- **Parking Rate (per residential unit)**
 - **Min**: 2.0 (2+ Bedrooms)
 - **Min**: 1.8 (2 bedroom)
 - **Min**: 1.5 (1 Bedroom)
 - **Min**: 1.3 (Studio)

Data Notes
Peer cities include:
- Arvada, CO,
- Chesterfield, MO,
- Durham, NC,
- McKinney, TX,
- Scottsdale, AZ,
- Vancouver, WA,
- Des Moines, IA.

ITE (Institute of Transportation Engineers) parking demand data is:
- Largely from suburban single-use sites with free parking
- Screened to include low vacancies (below 15%)

Residential parking data is inclusive of guest parking

*Institute for Transportation Engineers Data - numbers adjusted upwards by 10% to ensure capacity
Proposed Ratios: MF Residential Uses

Data Notes
Peer cities include:
Arvada, CO,
Chesterfield, MO,
Durham, NC,
Mckinney, TX,
Scottsdale, AZ,
Vancouver, WA, W
Des Moines, IA.
ITE (Institute of Transportation Engineers) parking demand data is:
• Largely from suburban single-use sites with free parking
• Screened to include low vacancies (below 15%) Residential parking data is inclusive of guest parking

*IInstitute for Transportation Engineers Data - numbers adjusted upwards by 10% to ensure capacity

Current Zoning
Observ W
ITE Standards* & Peer Cities
Recommended Zoning

Parking Rate (per residential unit)

2.5
2.0
1.5
1.0
0.5

Min: 2.0 (2+ Bedrooms)
Min: 1.8 (2 Bedroom)
Min: 1.5 (1 Bedroom)
Min: 1.3 (Studio)

High: 2.2
Low: 1.6

High: 2.5
Low: 2.1

AREA A
AREA B

Includes all multi-family unit types
High = 75th percentile
Low = 25th percentile
Proposed Ratios: MF Residential Uses

Data Notes
- Peer cities include: Arvada, CO, Chesterfield, MO, Durham, NC, McKinney, TX, Scottsdale, AZ, Vancouver, WA, W Des Moines, IA.
- ITE (Institute of Transportation Engineers) parking demand data is:
 - Largely from suburban single-use sites with free parking
 - Screened to include low vacancies (below 15%)
- Residential parking data is inclusive of guest parking

*Institute for Transportation Engineers Data - numbers adjusted upwards by 10% to ensure capacity

<table>
<thead>
<tr>
<th>CURRENT ZONING</th>
<th>OBSERVED DEMAND</th>
<th>ITE STANDARDS* & PEER CITIES</th>
<th>RECOMMENDED ZONING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min: 2.0 (2+ Bedrooms)</td>
<td>Low: 1.6 (1 Bedroom)</td>
<td>High: 1.1 (Vancouver)</td>
<td></td>
</tr>
<tr>
<td>Min: 1.8 (2 bedroom)</td>
<td>Low: 1.6</td>
<td>High: 1.4 (Chesterfield, MO)</td>
<td></td>
</tr>
<tr>
<td>Min: 1.5 (1 Bedroom)</td>
<td>Low: 1.6</td>
<td>High: 1.4 (Arvada)</td>
<td></td>
</tr>
<tr>
<td>Min: 1.3 (Studio)</td>
<td>Low: 1.6</td>
<td>High: 1.4 (Scottsdale, AZ)</td>
<td></td>
</tr>
</tbody>
</table>

- Includes all multi-family unit types
- High = 75th percentile
- Low = 25th percentile

Parking Rate (per residential unit)

- Flexibility To Go Above
- Lowest: 1.0
- Lowest: 1.0
- Lowest: 1.1
- Lowest: 1.0
1. Proposed Ratios: MF Residential Uses

Data Notes
Peer cities include: Arvada, CO, Chesterfield, MO, Durham, NC, McKinney, TX, Scottsdale, AZ, Vancouver, WA, W Des Moines, IA.
ITE (Institute for Transportation Engineers) parking demand data is:
• Largely from suburban single-use sites with free parking
• Screened to include low vacancies (below 15%)
Residential parking data is inclusive of guest parking

*Institute for Transportation Engineers Data - numbers adjusted upwards by 10% to ensure capacity

Per unit

<table>
<thead>
<tr>
<th>AREA A</th>
<th>AREA B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min: 1.3 (Studio)</td>
<td>Low: 1.6</td>
</tr>
<tr>
<td>Min: 1.5 (1 Bedroom)</td>
<td>Low: 2.1</td>
</tr>
<tr>
<td>Min: 1.8 (2 bedroom)</td>
<td>High: 2.2</td>
</tr>
<tr>
<td>Min: 2.0 (2+ Bedrooms)</td>
<td>High: 2.3</td>
</tr>
</tbody>
</table>

Otected Demand in OP
ITE* Peer Cities (1-bedroom)
Recommended (Zone A)
Recommended (Zone B)

Lowest: 1.0 (Vancouver)
Lowest: 1.0 (Arvada)
Highest: 1.4 (Scotsdale)
Highest: 2.2 (Chesterfield)

Lowest: 1.1 (High-Rise)
Highest: 2.5 (Arvada)
Highest: 2.0

Low: 2.1
Low: 1.6
High: 2.3

Min: 2.0
Min: 1.8
Min: 1.5
Min: 1.3

Low: 1.0
Low: 1.0
Low: 1.0
Low: 1.0

<table>
<thead>
<tr>
<th>CURRENT ZONING</th>
<th>OBSERVED DEMAND</th>
<th>ITE STANDARDS* & PEER CITIES</th>
<th>RECOMMENDED ZONING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min: 1.3 (Studio)</td>
<td>Low: 1.6</td>
<td>IITE Peer Cities (1-bedroom)</td>
<td>Recommended (Zone A)</td>
</tr>
<tr>
<td>Min: 1.5 (1 Bedroom)</td>
<td>Low: 2.1</td>
<td>ITE Peer Cities</td>
<td>Recommended (Zone B)</td>
</tr>
<tr>
<td>Min: 1.8 (2 bedroom)</td>
<td>High: 2.2</td>
<td>Highest: 1.4 (Scotsdale)</td>
<td>Highest: 2.2 (Chesterfield)</td>
</tr>
<tr>
<td>Min: 2.0 (2+ Bedrooms)</td>
<td>High: 2.3</td>
<td>Highest: 2.5 (Arvada)</td>
<td>Highest: 2.0</td>
</tr>
</tbody>
</table>

Includes all multi-family unit types
• High = 75th percentile
• Low = 25th percentile

Flexibility To Go Above, Based On Design and Amenities

Parking Rate (per residential unit)
Proposed Ratios: Office

Data Notes
Peer cities include:
Arvada, CO,
Chesterfield, MO,
Durham, NC,
McKinney, TX,
Scottsdale, AZ,
Vancouver, WA, W
Des Moines, IA.

ITE (Institute of Transportation Engineers) parking demand data is:
• Largely from suburban single-use sites with free parking
• Screened to include low vacancies (below 15%)
Residential parking data is inclusive of guest parking

*Institute for Transportation Engineers Data - numbers adjusted upwards by 10% to ensure capacity
Proposed Ratios: Retail/Commercial

CURRENT ZONING

OBSERVED DEMAND

ITE STANDARDS* & PEER CITIES

RECOMMENDED ZONING

- **High = 75th percentile**
- **Low = 25th percentile**

Parking Rate (per 1,000 SF of Gross Floor Area)

- **CITY-WIDE:** 4.0
- **A:** 1.9
- **B:** 1.0
- **Arvada/Durham/Scottsdale:** 4.0
- **Vancouver/Durham:** 2.5
- **Chesterfield:** 2.2

Data Notes:

Peer cities include:

- Arvada, CO
- Chesterfield, MO
- Durham, NC
- McKinney, TX
- Scottsdale, AZ
- Vancouver, WA, W
- Des Moines, IA

ITE (Institute of Transportation Engineers) parking demand data is:

- Largely from suburban single-use sites with free parking
- Screened to include low vacancies (below 15%)
- Residential parking data is inclusive of guest parking

*Institute for Transportation Engineers Data - numbers adjusted upwards by 10% to ensure capacity
Proposed Ratios: Restaurant

Data Notes
Peer cities include:
Arvada, CO,
Chesterfield, MO,
Durham, NC,
McKinney, TX,
Scottsdale, AZ,
Vancouver, WA, W Des Moines, IA.
ITE (Institute of Transportation Engineers) parking demand data is:
- Largely from suburban single-use sites with free parking
- Screened to include low vacancies (below 15%)
Residential parking data is inclusive of guest parking

*Institute for Transportation Engineers Data - numbers adjusted upwards by 10% to ensure capacity
1. Proposed Ratios: All

RESIDENTIAL (unit) OFFICE (1K SF) RETAIL/COMMERCIAL (1K SF) RESTAURANT (1K SF)

Flexibility To Go Above, Based On Design and Amenities

Flexibility To Go Below, Based On Design and Amenities

AREA A
High: 4.0
Low: 1.5

AREA B
High: 2.5
Low: 1.0

AREA A
High: 2.0
Low: 1.5

AREA B
High: 2.5
Low: 1.0

AREA A
High: 4.0
Low: 2.5

AREA B
High: 4.0
Low: 2.5

AREA A
High: 12.0
Low: 6.0

AREA B
High: 12.0
Low: 6.0

Proposed Ratios: All
Developing Flexibility: Approach

- **Finding:**
 Developers reacting to existing travel trends

- **Propose:**
 As-of right flexibility to build below or above proposed ranges

- **Based On:**
 - Developer feedback
 - Best practices for parking sharing
 - Demand reduction amenities which fit in Overland Park
Developing Flexibility: Approach

• **Finding:** Developers reacting to existing travel trends

• **Propose:**
 As-of right flexibility to build below or above proposed ranges

• **Based On:**
 - Developer feedback
 - Best practices for parking sharing
 - Demand reduction amenities which fit in Overland Park

OP Parking Goals:

1) Limit the impacts of excessive and underutilized parking supply and increase opportunities for productive uses and open space

2) Foster economic vitality and mixed-use districts by supporting walkability and activity density with appropriate parking policies

3) Implement codes that maximize the efficient use of parking and support shared parking resources citywide

4) Develop provisions that create quality parking screening and design standards that minimize adverse impacts of the built environment

5) Manage the growth of traffic by encouraging projects which minimize driving trips
Developing Flexibility: Approach

- **Finding:** Developers reacting to existing travel trends
- **Propose:** As-of-right flexibility to build below or above proposed ranges
- **Based On:**
 - Developer feedback
 - Best practices for parking sharing
 - Demand reduction amenities which fit in Overland Park

OP Parking Goals:

1. Limit the impacts of excessive and underutilized parking supply and increase opportunities for productive uses and open space
2. Foster economic vitality and mixed-use districts by supporting walkability and activity density with appropriate parking policies
3. Implement codes that maximize the efficient use of parking and support shared parking resources citywide
4. Develop provisions that create quality parking screening and design standards that minimize adverse impacts of the built environment
5. Manage the growth of traffic by encouraging projects which minimize driving trips
2. Flexibility for Constructing Parking
More Flexibility in Return for 1) More Sharing and 2) Demand Reduction

• Enable “as of right” choice on parking provision
 Make building less or sharing off-site is acceptable

• If above or below range:
 Require on-site parking to be designed for off-site sharing

 Require demand reduction amenities to be instituted

• Part of standard site plan review process
Flexibility for Constructing Parking
More Flexibility in Return for 1) More Sharing and 2) Demand Reduction

- **Enable “as of right” choice on parking provision**
 - Make building less or sharing off-site is acceptable

- **If above or below range:**
 - Require on-site parking to be designed for off-site sharing
 - Require demand reduction amenities to be instituted

- **Part of standard site plan review process**

<table>
<thead>
<tr>
<th>Parking Provision*</th>
<th>Parking Condition</th>
<th>Spaces Designed for Sharing</th>
<th>AND</th>
<th>Demand Reduction Amenities</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0+ per 1,000 SF</td>
<td>Above Range</td>
<td>All spaces built above range</td>
<td>↔</td>
<td>Multi-modal amenities</td>
</tr>
<tr>
<td>1.5 - 4.0 per 1,000 SF</td>
<td>In Range</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>0 – 1.5 per 1,000 SF</td>
<td>Below Range</td>
<td>All spaces built below range</td>
<td>↔</td>
<td>Multi-modal amenities</td>
</tr>
</tbody>
</table>

* - example ranges
Flexibility for Constructing Parking

1) Off-Site Sharing With Parking Provision Above Range

- All parking spaces built above range must be available for sharing with off-site uses
 - Documentation required as part of plan approval
 - (Same requirement type as setbacks, etc.)

- Incentivizes lower supply

- Promotes sharing

- ADA / dimensional requirements still apply

<table>
<thead>
<tr>
<th>Parking Provision*</th>
<th>Parking Condition</th>
<th>Spaces Designed for Sharing</th>
<th>AND</th>
<th>Demand Reduction Amenities</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0+ per 1,000 SF</td>
<td>Above Range</td>
<td>All spaces built above range</td>
<td></td>
<td>Multi-modal amenities</td>
</tr>
<tr>
<td>1.5 - 4.0 per 1,000 SF</td>
<td>In Range</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>0 – 1.5 per 1,000 SF</td>
<td>Below Range</td>
<td>All spaces built below range</td>
<td></td>
<td>Multi-modal amenities</td>
</tr>
</tbody>
</table>

* - example ranges
Flexibility for Constructing Parking

1) Off-Site Sharing With Parking Provision **Below Range**

- All parking spaces built **below range** must be available for sharing with off-site uses
 - Documentation required as part of plan review
 - (Same requirement type as setbacks, etc.)
- Disincentivizes lower supply without a sharing program
- Adds to shared supply
- ADA / dimensional requirements still apply

<table>
<thead>
<tr>
<th>Parking Provision*</th>
<th>Parking Condition</th>
<th>Spaces Designed for Sharing</th>
<th>AND</th>
<th>Demand Reduction Amenities</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0+ per 1,000 SF</td>
<td>Above Range</td>
<td>All spaces built above range</td>
<td>⇔</td>
<td>Multi-modal amenities</td>
</tr>
<tr>
<td>1.5 - 4.0 per 1,000 SF</td>
<td>In Range</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>0 – 1.5 per 1,000 SF</td>
<td>Below Range</td>
<td>All spaces built below range</td>
<td>⇔</td>
<td>Multi-modal amenities</td>
</tr>
</tbody>
</table>

* - example ranges
Flexibility for Constructing Parking
1) Off-Site Sharing Site Requirements

Parking Should Have:
• Primary entrance separate from building(s)
• Clear access from public street(s)
• Walking network to abutting public street(s)
• ADA accessibility at all access points

Documentation Needed:
• **Above Range:**
 Shared spaces and access designated in site plan OR written documentation of availability
• **Below Range:**
 Written documentation AND signed agreement with off-site property owner controlling net number of spaces (could be City)
Flexibility for Constructing Parking

2) Demand Reduction Amenities With Parking Provision Above or Below

- Measures to encourage less parking demand and support non-driving modes
- Supportive of citywide planning goals
- Demand reduction credits required for spaces
 - Constructed Above Range
 - Not constructed Below Range

<table>
<thead>
<tr>
<th>Parking Provision*</th>
<th>Parking Condition</th>
<th>Spaces Designed for Sharing</th>
<th>AND</th>
<th>Demand Reduction Amenities</th>
</tr>
</thead>
<tbody>
<tr>
<td>4+ per 1,000 SF</td>
<td>Above Range</td>
<td>All spaces built above range</td>
<td>↔</td>
<td>Multi-modal amenities</td>
</tr>
<tr>
<td>1.5 – 4 per 1,000 SF</td>
<td>In Range</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>0 – 1.5 per 1,000 SF</td>
<td>Below Range</td>
<td>All spaces built below range</td>
<td>↔</td>
<td>Multi-modal amenities</td>
</tr>
</tbody>
</table>

* - example ranges
Flexibility for Constructing Parking

2) Demand Reduction Amenities: 1 credit required per space out of range

Pedestrian Improvement

1 credit for every:
- Crosswalk improvement
- 40 SF of new public sidewalk
- 80 SF of improved/repaired public sidewalk

10 credits for every:
- Raised crosswalk
- Roadway crossing beacon/signal

Rideshare

6 credits for every carpool or vanpool space provided
6 credits for a covered rideshare waiting area

EV Support

4 credits for every public EV charging station

Transit Improvement

5 credits for every improved transit shelter
10 credits for every new transit shelter
20 credits for sidewalk improvements connecting to a transit stop
50 credits for transit pass subsidies for tenants
200 credits for shuttle service connecting to project site

Bicycle Parking

1 credit for every:
- 1 bike parking spaces when compliant & secure bike parking is provided indoors
- 4 bike parking spaces when compliant bike parking is provided outdoors, under cover
- 8 bike parking spaces when compliant bike parking is provided outdoors

3 credits for every dedicated bike shower room
25 credits for bikeshare membership subsidies for tenants

1x credit for surface parking
3x credit for structured parking
Demand Reduction Amenities
Demand Reduction Cost Savings if Constructing Below Range

Estimated parking costs in Overland Park:
• Surface:
 • $7,500/space
• Structured:
 • $22,000 (Kansas City)
Shared Parking Between Land Uses and Sites

<table>
<thead>
<tr>
<th>Land Use</th>
<th>12 AM – 7 AM</th>
<th>7 AM – 6 PM</th>
<th>6 PM – 12 AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td>5%</td>
<td>100%</td>
<td>5%</td>
</tr>
<tr>
<td>Retail</td>
<td>0%</td>
<td>100%</td>
<td>50%</td>
</tr>
<tr>
<td>Residential</td>
<td>100%</td>
<td>55%</td>
<td>85%</td>
</tr>
<tr>
<td>Restaurant</td>
<td>5%</td>
<td>70%*</td>
<td>100%</td>
</tr>
<tr>
<td>Industrial</td>
<td>5%</td>
<td>100%</td>
<td>5%</td>
</tr>
<tr>
<td>Hotel</td>
<td>100%</td>
<td>65%</td>
<td>90%</td>
</tr>
<tr>
<td>Church</td>
<td>0%</td>
<td>10%</td>
<td>30%</td>
</tr>
<tr>
<td>Cinema/Live</td>
<td>0%</td>
<td>70%</td>
<td>100%</td>
</tr>
<tr>
<td>Entertainment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* - 0% if shared with over 150,000 square feet of office space

Scenario	Distance Between Uses	If Project is Below Range	If Project is Above Range
Sharing between On-Site Users | N/A – on same site | Design for shared parking and provide demand reduction amenities |
Shared Between Off-Site Users | ¼ mile walking distance of building entrance | Credit off-site supply towards parking range |
Developing Design Revisions: Approach

• **Finding:**
 Design requirements continue to favor vehicle access to projects

• **Propose:**
 Revisions to code which place pedestrians on more equal footing

• **Based On:**
 Best practices for design
Developing Design Revisions: Approach

• Finding:
Design requirements continue to favor vehicle access to projects

• Propose:
Revisions to code which place pedestrians on more equal footing

• Based On:
Best practices for design

OP Parking Goals:

1) Limit the impacts of excessive and underutilized parking supply and increase opportunities for productive uses and open space

2) Foster economic vitality and mixed-use districts by supporting walkability and activity density with appropriate parking policies

3) Implement codes that maximize the efficient use of parking and support shared parking resources citywide

4) Develop provisions that create quality parking screening and design standards that minimize adverse impacts of the built environment

5) Manage the growth of traffic by encouraging projects which minimize driving trips

Developing Design Revisions: Approach

• Finding:
Design requirements continue to favor vehicle access to projects

• Propose:
Revisions to code which place pedestrians on more equal footing

• Based On:
Best practices for design

OP Parking Goals:

1) Limit the impacts of excessive and underutilized parking supply and increase opportunities for productive uses and open space

2) Foster economic vitality and mixed-use districts by supporting walkability and activity density with appropriate parking policies

3) Implement codes that maximize the efficient use of parking and support shared parking resources citywide

4) Develop provisions that create quality parking screening and design standards that minimize adverse impacts of the built environment

5) Manage the growth of traffic by encouraging projects which minimize driving trips

Provide convenient travel for those accessing projects by transit, walking, bicycling, etc.
Design Improvements

- Connect building “front door” entrances to adjacent street

- Connect all building entrances to abutting street network where vehicle access is also provided

- Better accommodate pedestrian crossings at driveways
 - Maintain grade, cross slope, and clear width of sidewalk
 - Ensure clear sightlines for exiting drivers at least 10-feet up and down the sidewalk
Where front-yard parking is allowed:

- No more than 1 space per 1,000 square feet in the development’s primary building located between the front façade of the primary building and the primary abutting street.

 Still allows for parking blocks of no more than 25 spaces if not in compliance.

- Minimum parking setback of 30 feet (**retail only**)

 10’ building setback option for commercial and office uses.

- **Commercial projects only**

Permitted parking maximum (front of property)

30-foot parking setback
Design Improvements

- Landscaping and walkway requirements in surface parking lots intensify if parking is constructing **above range**

Current Language →

- **Landscaped Median** at least seven (7) feet wide.
 - Increase to 10 feet
 - Additional **shade trees**

- **Pedestrian Walkway** within a landscaped median that is at least ten (10) feet wide.
 - Increase to 15 feet
 - **Require** shrubs, hedges, and other planting materials
 - Additional **shade trees**

Proposed Language ←

- Landscaped median with trees, shrubs, and a walkway between parking blocks.
- Landscaped median with trees, a planter, and a walkway between parking blocks.
- Landscaped median with trees and shrubs between parking blocks.

Parking Lot Landscaping Imagery (Source: Site Design Standards 4.14.2 Parking Block)
Example – Aria Residential Project

- Project in compliance with proposed revisions
 - 124 parking spaces proposed (1.1 per unit)
 - Building entrances connected to street network providing vehicle access

- Building primary entrance
- Pedestrian access
- Vehicle access
Example – Fieldstone Office Park

- Project partially in compliance with proposed revisions
 - 375 parking spaces proposed (4.5 per unit)
 - 39 in excess
 - Additional amenities such as bicycle parking and rideshare strategies/vanpool spaces (applied through credits) need to be applied

All spaces outside of 30’ street setback

Building entrances partially connected to street network providing vehicle access
Example – Fountains Shopping Ctr

- 102,325 SF retail
- 29,388 restaurant

- Project not in compliance with proposed revisions
- 692 parking spaces proposed on-site
 - 89 in excess
 - Additional amenities such as bicycle parking and rideshare strategies/vanpool spaces (applied through credits) need to be applied
- 48 spaces within 30’ street setback
- Building entrances not connected to street network providing vehicle access
Example – Nall Corporate Center

263,490 SF office

• Project partially in compliance with proposed revisions
 1,068 parking spaces proposed on-site
 408 in excess
 Additional amenities such as bicycle parking and rideshare
 strategies/vanpool spaces (applied through credits) need to be applied

Building primary entrance
Pedestrian access
Vehicle access

Parking blocks exceeding 1 per 1,000 SF in front of primary building and abutting street

Building entrances connected to street network providing vehicle access
Parking requirements do not match travel trends or Overland Park’s goals

Proposed revisions adhere to data, best practices and developer input

Efficiencies of flexibility and shared resources are valuable for economic development

Zoning changes are an evolutionary process
Thank You!